user_mobilelogo

We make no claims regarding the medicinal, preventive or curative properties of wolfberries (lycium barbarum). This product is not intended to diagnose, treat, cure, or prevent disease. The wolfberry fruit has been used in traditional Chinese medicine (TCM) for more than 2000 years. Modern scientists have been researching the potential of wolfberries (lycium barbarum) over the past 20 years. Scroll down to see these research articles posted on the National Institutes of Health (NIH.GOV) website.

 

Alleviation of the Acute Doxorubicin-Induced Cardiotoxicity by Lycium Barbarum Polysaccharides Through the Suppression of Oxidative Stress

2010 Nov 5 Abstract

The present study aims to investigate whether Lycium barbarum polysaccharides (LBP) could protect against acute doxorubicin (DOX)-induced cardiotoxicity. Rats received daily treatment of either distilled water (4 ml/kg) or LBP (200mg/kg) for 10 days and then followed by an intravenous injection at day 7 of either saline (10 ml/kg) or DOX (10 mg/kg). DOX induced significantly myocardial damage in rats, which were characterized as conduction abnormalities, decreased heart-to-body weight ratio, increased serum CK, and myofibrillar disarrangement. DOX treatment also increased MDA and decreased SOD and GSH-Px activity in cardiac tissues. Pretreatment with LBP significantly reduced DOX-induced oxidative injury in cardiac tissue, suggesting by the fact that LBP significantly attenuated DOX-induced cardiac myofibrillar disarrangement and LBP was effective in decreasing the levels of serum CK and thus improving conduction abnormalities caused by DOX. LBP treatment significantly increased SOD and GSH-Px activity and decreased the MDA level of heart tissues damaged by DOX exposure in rats. Furthermore, the cytotoxic study showed that LBP protect against cytotoxicity of DOX in cardiac myoblasts H9c2 but dose not attenuate the anti-tumor activity of DOX. In summary, our evidence indicates that LBP elicited a typical protective effect on DOX-induced acute cardiotoxicity via suppressing oxidative stress.

https://pubmed.ncbi.nlm.nih.gov/21056614/

 

Effects of Lycium barbarum L. Polysaccharides on Inflammation and Oxidative Stress Markers in a Pressure Overload-Induced Heart Failure Rat Model

2020 Jan 22 Abstract

Despite recent advances in disease management and prevention, heart failure (HF) prevalence is still high. Hypertension, inflammation and oxidative stress are being investigated as important causative processes in HF. L. barbarum L. polysaccharides (LBPs) are widely used for their anti-inflammatory and antioxidant properties. Thus, the aim of the present study was to evaluate the effects of LBPs on inflammation and oxidative stress markers in a pressure overload-induced HF rat model, surgically induced by abdominal aorta banding in Wistar rats (AAB) (n = 28). Also, control rats (n = 10) were subjected to a sham operation. After echocardiographic confirmation of HF (week 24), AAB rats were divided into three groups: rats treated with LBPs for 12 weeks: 100 mg/kg body weight /day (AAB_100, n = 9), 200 mg/kg body weight /day (AAB_200, n = 7) and no-treatment group (control AAB, n = 12). After 12 weeks of treatment with LBPs, the decline of cardiac function was prevented compared to the control AAB rats. Treatment with 200 mg/kg body weight /day LBPs significantly reduced the inflammation as seen by cytokine levels (IL-6 and TNF-α) and the plasma lipid peroxidation, as seen by malondialdehyde levels. These results suggest that LBPs present anti-inflammatory and antioxidant effects with utility in a heart failure HF animal model and encourage further investigation of the cardioprotective effects of these polysaccharides.

https://pubmed.ncbi.nlm.nih.gov/31979068/

 

Thoracic Aorta Vasoreactivity in Rats Under Exhaustive Exercise: Effects of Lycium Barbarum Polysaccharides Supplementation

2013 Oct 24 Abstract

Background: Reduced arterial compliance is associated with an increased rate of morbidity and mortality in cardiovascular disease. Exercise is beneficial for compromised arterial compliance. However, the beneficial effects of exercise are lost with exhaustion. Lycium barbarum L. has been used in China for centuries to maintain good health. In this regard, the primary purpose of this study was to characterize the effects of the polysaccharides from Lycium barbarum (LBPs) on arterial compliance during exhaustive exercise.

Methods: A four-week swimming exercise program was designed for rats, and the blood levels of malondialdehyde (MDA), super oxide dismutase (SOD), nitric oxide(NO) and heat shock protein 70(HSP70) were detected. The tension of aorta rings was measured to evaluate the response of rats on noradrenaline (NA)-induced contractions.

Results: The rats administered LBPs showed longer swimming time until exhaustion than the control group of rats. Exercise-induced MDA elevation was repressed by LBPs supplementation. The LBPs-supplemented rats displayed a significant increase of SOD, NO, HSP70 than the non-supplemented rats. Additionally, LBPs significantly up-regulated the expression of eNOS and improved the endothelium-dependent vasodilatation of the aorta ring.

Conclusion: Our study proved that LBPs administration significantly inhibited the oxidative stress, and improved the arterial compliance.

https://pubmed.ncbi.nlm.nih.gov/24152940/

 

Lycium Barbarum Polysaccharides Protects H9c2 Cells From Hypoxia-Induced Injury by Down-Regulation of miR-122

2018 Nov 17 Abstract

Background: Lycium barbarum polysaccharides (LBPs) are major ingredients of fructus lycii, which have multiple pharmacological activities, such as antioxidant, neuroprotective, and anti-inflammatory activities. This study attempted to reveal the potential of LBPs in hypoxia-injured H9c2 cells and the possible underlying mechanisms.

Methods: H9c2 cells were treated by 300 μg/mL LBPs for 24 h upon hypoxia. Subsequently, the changes in cell viability, migration and apoptosis were evaluated. pre-miR-122 or miR-122 sponge was transfected into H9c2 cells to investigate whether miR-122 was involved in the mechanisms of LBPs' action. Besides, an animal model of myocardial infarction (MI) was established, and the in vivo effects of LBPs were further investigated.

Results: LBPs increased cell viability, down-regulated p53, p21 and p16 protein expressions, improved migration, and repressed apoptosis in hypoxia-injured H9c2 cells. miR-122 was highly expressed in response to hypoxia, while was down-regulated by addition of LBPs. The protective actions of LBPs in hypoxia-injured H9c2 cells were attenuated by miR-122 overexpression, while were accelerated by miR-122 suppression. Also, LBPs-induced the activation of MEK/ERK and AMPK signaling pathways were attenuated by miR-122 overexpression, and were accelerated by miR-122 suppression. in vivo investigation revealed that, MI rats administrated with LBPs decreased infarct size and improved cardiac function via down-regulation of miR-122.

Conclusion: LBPs exhibited in vitro and in vivo cardioprotective activities via down-regulating miR-122. LBPs may have potential for the treatment of acute myocardial infarction (AMI).

https://pubmed.ncbi.nlm.nih.gov/30458344/

 

Chemical Characterization of Lycium Barbarum Polysaccharides and Their Reducing Myocardial Injury in ischemia/reperfusion of Rat Heart

2010 Dec 1 Abstract

Polysaccharides were extracted from Lycium barbarum fruits in this work. Fourier transform infrared spectroscopy (FT-IR) and high-performance liquid chromatography (HPLC) have been employed to characterize this polysaccharides in the present study. The results of chemical composition indicated that the L. barbarum polysaccharides were composed of two kinds of monosaccharides, namely glucose and fructose in molar ratios of 1:2.1. The results indicated that the glucose and fructose were the predominant monosaccharides. IR spectrum of L. barbarum polysaccharides revealed a typical peaks of polysaccharides. The results still showed that L. barbarum polysaccharides significantly decreased the myocardium LD level, increased Na(+)-K(+)-ATPase and Ca(2+)-ATPase activities in heart ischemia reperfusion (IR) rats. In addition, L. barbarum polysaccharides still markedly decreased myocardium Bax positive rate and myocardial cell apoptosis and increased Bcl-2 positive rate in a dose-dependent manner. It may be concluded that administration of L. barbarum polysaccharides can prevented the development of cardiovascular diseases.

https://pubmed.ncbi.nlm.nih.gov/20813126/

 

 

Goji (Lycium Barbarum): Phytochemistry, Pharmacology and Safety in the Perspective of Traditional Uses and Recent Popularity

2009 Oct 20 Abstract

Since the beginning of this century, Goji berries and juice are being sold as health food products in western countries and praised in advertisements and in the media for well-being and as an anti-aging remedy. The popularity of Goji products has rapidly grown over the last years thanks to efficient marketing strategies. Goji is a relatively new name given to Lycium barbarum and L. chinense, two close species with a long tradition of use as medicinal and food plants in East Asia, in particular in China. While only L. barbarum is officinal, the fruit (fructus Lycii) and the root bark (cortex Lycii radicis) of both species are used in the folk medicine. We review here the constituents, pharmacology, safety, and uses of L. barbarum and L. chinense with consideration to the different parts of the plant. Investigations of the fruit have focused on proteoglycans, known as " Lycium barbarum polysaccharides", which showed antioxidative properties and some interesting pharmacological activities in the context of age related diseases such as atherosclerosis and diabetes. As to the root bark, several compounds have demonstrated a hepatoprotective action as well as inhibitory effects on the rennin/angiotensin system which may support the traditional use for the treatment of hypertension. While there are no signs of toxicity of this plant, two cases of possible interaction with warfarin point to a potential risk of drug interaction. In view of the available pharmacological data and the long tradition of use in the traditional Chinese medicine, L. barbarum and L. chinense certainly deserve further investigation. However, clinical evidences and rigorous procedures for quality control are indispensable before any recommendation of use can be made for Goji products.

https://pubmed.ncbi.nlm.nih.gov/19844860/

 

 

In Search for Potential Antidiabetic Compounds From Natural Sources: Docking, Synthesis and Biological Screening of Small Molecules From Lycium spp. (Goji)

2019 Dec 27 Abstract

Current clinical antidiabetic drugs, like rosiglitazone 1, have been implicated in some serious side effects like edema, weight gain, and heart failure, making it necessary to find alternative agents. Partial agonists of peroxisome-proliferator activated receptor-gamma (PPARγ) were determined to possess improved insulin sensitivity without undeseirable side-effects when compared to full agonists of PPARγ, like rosiglitazone 1. The traditional Chinese medicine (TCM) plants, Goji (Lycium barbarum and Lycium chinense) are widely used for treating symptoms related to various diseases including diabetes and hypertension. Twenty-seven reported compounds from Goji were docked into both partial- and full-agonist binding sites of PPARγ. Amongst the docked compounds, phenylethylamide-based phytochemicals (5-9) (termed as tyramine-derivatives, TDs) were found to possess good docking scores and binding poses with favorable interactions. Synthesis of 24 TDs, including three naturally occuring amides (689) were synthesized and tested for PPARγ gene induction with cell-based assay. Three compounds showed similar or higher fold induction than the positive control, rosiglitazone. Among these three active TDs, trans-N-feruloyloctopamine (9) and tyramine derivatives-enriched extract (TEE) (21%) of the root bark of L. chinense were further studied in vivo using db/db mice. However, both TEE as well as 9 did not show significant antidiabetic properties in db/db mice. In vivo results suggest that the proposed antidiabetic property of Lycium species may not be due to tyramine derivatives alone. Further studies of tyramine derivatives or enriched extract(s) for other bioactivities like hypocholesterolemic activities, and studies of novel isolated compounds from Goji will enable a more complete understanding of their bioactivities.

https://pubmed.ncbi.nlm.nih.gov/31909232/

 

 

*These statements have not been evaluated by the Food and Drug Administration.

This product is not intended to diagnose, treat, cure, or prevent disease.