user_mobilelogo

We make no claims regarding the medicinal, preventive or curative properties of wolfberries (lycium barbarum). This product is not intended to diagnose, treat, cure, or prevent disease. The wolfberry fruit has been used in traditional Chinese medicine (TCM) for more than 2000 years. Modern scientists have been researching the potential of wolfberries (lycium barbarum) over the past 20 years. Scroll down to see these research articles posted on the National Institutes of Health (NIH.GOV) website.

 

Effects of Lycium Barbarum on the Visual System

2017 Mar 27 Abstract

Lycium barbarum (wolfberry, gogi berry, gouqizi, ) is one of the most widely used Chinese herbal medicines (CHMs) and is also one of the most scientifically studied. Indeed, the polysaccharide component of this berry (LBP) has been shown to have antioxidant, antiinflammatory, antiexcitotoxic, and antiapoptotic properties. These properties make it a particularly useful treatment option for the ocular environment. Although there are a handful of studies investigating the use of LBP to treat diseases affecting the lens, the vast majority of the published literature investigating LBP in the visual system focus on the retina. In this chapter, we have described what is currently understood concerning the effects of LBP treatment on various retinal diseases, including glaucoma, ischemia/reperfusion, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. We then describe the functions attributed to LBP using other cellular contexts to elucidate the full mechanisms this CHM utilizes in the retina. By making connections between what is known about the function of LBP in a variety of tissues and its function as a therapy for retinal degenerative diseases, we hope to further emphasize the continued use of this CHM in clinical medicine in addition to providing a platform for additional study.

https://pubmed.ncbi.nlm.nih.gov/28807155/

 

An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides

2014 Dec 17 Abstract

Lycium barbarum berries, also named wolfberry, Fructus lycii, and Goji berries, have been used in the People's Republic of China and other Asian countries for more than 2,000 years as a traditional medicinal herb and food supplement. L. barbarum polysaccharides (LBPs) are the primary active components of L. barbarum berries and have been reported to possess a wide array of pharmacological activities. Herein, we update our knowledge on the main pharmacological activities and possible molecular targets of LBPs.

 

  • Several clinical studies in healthy subjects show that consumption of wolfberry juice improves general wellbeing and immune functions.
  • LBPs are reported to have antioxidative and antiaging properties in different models. LBPs show antitumor activities against various types of cancer cells and inhibit tumor growth in nude mice through induction of apoptosis and cell cycle arrest.
  • LBPs may potentiate the efficacy of lymphokine activated killer/interleukin-2 combination therapy in cancer patients.
  • LBPs exhibit significant hypoglycemic effects and insulin-sensitizing activity by increasing glucose metabolism and insulin secretion and promoting pancreatic β-cell proliferation.
  • They protect retinal ganglion cells in experimental models of glaucoma.
  • LBPs protect the liver from injuries due to exposure to toxic chemicals or other insults.
  • They also show potent immunoenhancing activities in vitro and in vivo.
  • Furthermore, LBPs protect against neuronal injury and loss induced by β-amyloid peptide, glutamate excitotoxicity, ischemic/reperfusion, and other neurotoxic insults.
  • LBPs ameliorate the symptoms of mice with Alzheimer's disease and enhance neurogenesis in the hippocampus and subventricular zone, improving learning and memory abilities.
  • They reduce irradiation- or chemotherapy-induced organ toxicities.
  • LBPs are beneficial to male reproduction by increasing the quality, quantity, and motility of sperm, improving sexual performance, and protecting the testis against toxic insults.
  • Moreover, LBPs exhibit hypolipidemic, cardioprotective, antiviral, and antiinflammatory activities.

 

There is increasing evidence from preclinical and clinical studies supporting the therapeutic and health-promoting effects of LBPs, but further mechanistic and clinical studies are warranted to establish the dose-response relationships and safety profiles of LBPs.

https://pubmed.ncbi.nlm.nih.gov/25552899/

 

Lycium Barbarum Polysaccharides Protect Human Lens Epithelial Cells Against Oxidative Stress-Induced Apoptosis and Senescence

2014 Oct 15 Abstract

Objectives: We aimed to investigate the protective effect of Lycium barbarum polysaccharides (LBPs) against oxidative stress-induced apoptosis and senescence in human lens epithelial cells.

Methods: To study apoptosis, SRA01/04 cells, a human lens epithelial cell lines, were exposed to 200 µM hydrogen peroxide (H2O2) for 24 h with or without pretreatment with LBPs. Cell viability was measured using a Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis, intracellular reactive oxygen species (ROS), and the loss of mitochondria membrane potential (Δψm) were detected by flow cytometric analyses. Expression levels of Bcl-2 and Bax proteins were measured by western blot analysis. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were quantized using commercial enzymatic kits according to the manufacturer's instructions. To study senescence, SRA01/04 cells were pre-incubated with LBPs and all cells were then exposed to 100 µM H2O2 for 96 h. Cellular senescence was assessed by morphologic examination and senescence-associated β-galactosidase (SA-β-gal) staining.

Results: LBPs significantly reduced H2O2-induced cell apoptosis, the generation of ROS, the loss of Δψm, and the levels of MDA. LBPs also inhibited H2O2-induced downregulated Bcl-2 and upregulated Bax proteins and increased the levels of SOD and GSH enzyme activity. Moreover, LBPs significantly attenuated H2O2-induced cellular senescence.

Conclusions: These findings suggested that LBPs protect human lens epithelial cells from H2O2-induced apoptosis by modulating the generation of ROS, loss of Δψm, Bcl-2 family, and antioxidant enzyme activity and attenuating cellular senescence.

https://pubmed.ncbi.nlm.nih.gov/25333784/

 

Neuro-protective Mechanisms of Lycium Barbarum

2016 Mar 31 Abstract

Neuronal diseases, including retinal disorders, stroke, Alzheimer's disease, Parkinson's disease and spinal cord injury, affect a large number of people worldwide and cause heavy social and economic burdens. Although many efforts have been made by scientists and clinicians to develop novel drug and healthcare strategies, few of them received satisfactory outcomes to date. Lycium barbarum is a traditional homology of medicine and food in Chinese medicine, with the capability to nourish the eyes, liver and kidneys. Recent studies have also explored its powerful neuro-protective effects on a number of neuronal diseases. In the current review, we collected key recent findings regarding the neuro-protective effects and mechanisms of L. barbarum derivatives, primarily its polysaccharide (LBP) , in some common diseases of the nervous system. A comprehensive comparison with currently available drugs has also been discussed. In general, LBP is a promising neuronal protector with potent ameliorative effects on key pathological events, such as oxidative stress, inflammation, apoptosis and cell death with minimal side effects.

https://pubmed.ncbi.nlm.nih.gov/27033360/

 

Lycium Barbarum Polysaccharides Attenuates N-methy-N-nitrosourea-induced Photoreceptor Cell Apoptosis in Rats Through Regulation of Poly (ADP-ribose) Polymerase and Caspase Expression

2016 May 18 Abstract

Ethnopharmacological relevance: Lycium barbarum L., popularly known as "Goji berry", a classic of Traditional Chinese Medicine has long been used to treat ocular diseases and cardiovascular diseases. Recently, the photoreceptor cell protection of Lycium barbarum polysaccharides (LBP), a water extract from Lycium barbarum L. has received more attention. The present study was designed to investigate the effect of LBP on N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell apoptosis, and the involvement of the poly (ADP-ribose) polymerase (PARP) and caspase.

Materials and methods: Photoreceptor cell injury was induced in male Sprague-Dawley rats by an intraperitoneal injection of MNU 60mg/kg. Seven days prior to MNU injection, LBP were intragastrical administered daily, rats were sacrificed at 24h and 7 days after MNU injection. Retinal morphologies, photoreceptor cells apoptosis, and protein expression were evaluated at 24h and 7 days after MNU injection.

Results: Morphologically, the outer nuclear layer was well preserved in the LBP-treated rat retinas throughout the experimental period. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick-end labeling (TUNEL) assays showed that LBP could significantly suppress the loss of photoreceptor cells, as determined by the photoreceptor cell ratio at the central retina 24h and 7 days after MNU administration. Western-blot analysis demonstrated the expression levels of procaspase-9, -7, -3 and cleaved caspase-9, -7, -3 were upregulated, and PARP were downregulated both 24h and 7 days after MNU injection. LBP treatment significantly decreased protein levels of procaspase and cleaved caspase, increased the level of PARP and cleaved PARP on 24h and 7 days.

Conclusions: LBP inhibits MNU-induced rat photoreceptor cell apoptosis and protects retinal structure via the regulation of the expressions of PARP and caspase.

https://pubmed.ncbi.nlm.nih.gov/27208869/

 

 

Lycium Barbarum Polysaccharides Reduce Neuronal Damage, Blood-Retinal Barrier Disruption and Oxidative Stress in Retinal ischemia/reperfusion Injury

2011 Jan 26 Abstract

Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R) injuries. Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are good for "eye health" according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP), aquaporin-4 (AQP4), poly(ADP-ribose) (PAR) and nitrotyrosine (NT) were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB) was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL) and the inner nuclear layer (INL) of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.

https://pubmed.ncbi.nlm.nih.gov/21298100/

 

Activation of the Nrf2/HO-1 Antioxidant Pathway Contributes to the Protective Effects of Lycium Barbarum Polysaccharides in the Rodent Retina After Ischemia-Reperfusion-Induced Damage

2014 Jan 6 Abstract

Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)-mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression.

https://pubmed.ncbi.nlm.nih.gov/24400114/

 

Lycium Barbarum Polysaccharide Extracts Preserve Retinal Function and Attenuate Inner Retinal Neuronal Damage in a Mouse Model of Transient Retinal Ischaemia

2017 Apr 27 Abstract

Background: Retinal ischaemia is a common feature shared by numerous eye diseases. Ischaemic insult leads to retinal dysfunction and neuronal death. Lycium barbarum polysaccharides are well known for eyesight preservation. We have previously reported the effect of Lycium barbarum polysaccharides on cell death, blood ocular barrier and oxidative stress within 24 h retinal ischaemia. This study focuses on retinal function and looks for ultrastructural and cellular correlates after a relatively long period of reperfusion for 7 days.

Methods: Two-hour ischaemia was induced by intraluminal occlusion of the internal carotid artery. Either Lycium barbarum polysaccharides or phosphate-buffered saline was orally pre-administered daily for 7 days before ischaemia and continued for 1, 3 and 7 days after reperfusion. Electroretinogram was performed to evaluate visual function. Paraffin-embedded retinal sections were prepared 7 days after reperfusion and utilized for histological and immunohistochemical analyses.

Results: Ischaemia led to sustained inhibition of b-wave amplitude and oscillatory potentials. Lycium barbarum polysaccharide-treated mice exhibited greater b-wave and oscillatory potential responses from days 1 to 7 after reperfusion. In addition, increased number of viable cells and calretinin-positive cells, as well as enhanced immunoreactivity of protein kinase C alpha and attenuated glial fibrillary acidic protein expression, was noted in Lycium barbarum polysaccharide-treated retina.

Conclusions: Daily consumption of Lycium barbarum polysaccharides effectively alleviated ischaemia-induced retinal dysfunction as well as reduced correlated neuronal death and glial activation. This prolonged effect could last at least 7 days. It suggested that Lycium barbarum polysaccharides might serve as a neuroprotective agent in ischaemic retinopathies.

https://pubmed.ncbi.nlm.nih.gov/28349587/

 

Effects of Lycium Barbarum (Goji Berry) on Dry Eye Disease in Rats

2017 Nov 3 Abstract

Lycium barbarum (goji berry) has long been used as a food and traditional herbal medicine. This study aimed to investigate the beneficial effect of the goji berry on dry eye disease in rats. Male Sprague‑Dawley rats with induced dry eye disease were randomly assigned to four groups: Vehicle (control), low‑dose goji berry extract [GBE; 250 mg/kg/body weight (bw)], median‑dose GBE (350 mg/kg/bw), and high‑dose GBE (500 mg/kg/bw). Three methods, Schirmer's test, tear break‑up time (BUT) measurement and keratoconjunctival fluorescein staining, were used to evaluate the effect of GBE on symptoms of dry eye disease experienced by the rats. The results of the present study revealed that both the Schirmer's test score and tear BUT significantly increased following 1 week of GBE administration. Furthermore, the severity of the keratoconjunctival staining decreased significantly. In addition, the results suggested that administration of GBE may ameliorate dry eye disease symptoms in a dose‑dependent manner. There were no mortalities and no apparent abnormal histopathology changes in the liver or kidney tissues of rats administered GBE for 21 consecutive days. Polysaccharides and betaine present in GBE may have important effects in alleviating dry eye disease induced by oxidative stress and inflammation. In conclusion, the goji berry is a safe, functional food with beneficial effects in alleviating dry eye disease.

https://pubmed.ncbi.nlm.nih.gov/29115477/

 

Lycium Barbarum (Goji Berry) Extracts and Its Taurine Component Inhibit PPAR-γ-dependent Gene Transcription in Human Retinal Pigment Epithelial Cells: Possible Implications for Diabetic Retinopathy Treatment

2011 Nov 1 Abstract

The peroxisome proliferator activated receptor-γ (PPAR-γ) is involved in the pathogenesis of diabetic retinopathy. Diabetic retinopathy is a preventable microvascular diabetic complication that damages human retinal pigment epithelial cells. Taurine is abundant in the fruit of Lycium barbarum (Goji Berry), and is reportedly beneficial for diabetic retinopathy. However, the mechanism of its action is unknown. Hence, we have investigated the mechanism of action of an extract from L. barbarum on a model of diabetic retinopathy, the retinal ARPE-19 cell line, and identified the receptor function of taurine, an active component of L. barbarum (Goji Berry) extract, which is potentially responsible for the protective effect on diabetic retinopathy. We demonstrate for the first time that L. barbarum extract and its taurine component dose-dependently enhance PPAR-γ luciferase activity in HEK293 cell line transfected with PPAR-γ reporter gene. This activity was significantly decreased by a selective PPAR-γ antagonist GW9662. Moreover, L. barbarum extract and taurine dose-dependently enhanced the expression of PPAR-γ mRNA and protein. In an inflammation model where ARPE-19 cells were exposed to high glucose L. barbarum extract and taurine down-regulated the mRNA of pro-inflammatory mediators encoding MMP-9, fibronectin and the protein expression of COX-2 and iNOS proteins. The predicted binding mode of taurine in the PPAR-γ ligand binding site mimics key electrostatic interactions seen with known PPAR-γ agonists. We conclude that PPAR-γ activation by L. barbarum extract is associated with its taurine content and may explain at least in part its use in diabetic retinopathy progression.

https://pubmed.ncbi.nlm.nih.gov/21820420/

 

Reversal of the Caspase-Dependent Apoptotic Cytotoxicity Pathway by Taurine From Lycium Barbarum (Goji Berry) in Human Retinal Pigment Epithelial Cells: Potential Benefit in Diabetic Retinopathy

2012 Apr 11 Abstract

Diabetic retinopathy is a preventable microvascular diabetic complication and a leading cause of vision loss. Retinal pigment epithelial cell apoptosis is an early event in diabetic retinopathy. Taurine is reportedly beneficial for diabetic retinopathy and is abundant in the fruit of Lycium barbarum (LB). We have investigated the effect of pure taurine and an extract of LB rich in taurine on a model of diabetic retinopathy, the retinal ARPE-19 cell line exposed to high glucose. We demonstrate for the first time that LB extract and the active ligand, taurine, dose dependently enhance cell viability following high glucose treatment in the ARPE-19 retinal epithelial cell line. This cytoprotective effect was associated with the attenuation of high glucose-induced apoptosis, which was shown by characteristic morphological staining and the dose-dependent decrease in the number of apoptotic cells, determined by flow cytometry. Moreover, we have shown that LB extract and taurine dose dependently downregulate caspase-3 protein expression and the enzymatic activity of caspase-3. We conclude that taurine, a major component of LB, and the LB extract, have a cytoprotective effect against glucose exposure in a human retinal epithelial cell line and may provide useful approaches to delaying diabetic retinopathy progression.

https://pubmed.ncbi.nlm.nih.gov/22567031/

 

High Glucose-Induced Barrier Impairment of Human Retinal Pigment Epithelium Is Ameliorated by Treatment With Goji Berry Extracts Through Modulation of cAMP Levels

2013 Dec 15 Abstract

Human retinal pigment epithelium cells were used to investigate the mechanisms underlying blood-retinal barrier disruption under conditions of chronic hyperglycemia. The treatment with 25 mM glucose caused a rapid drop in the transepithelial electrical resistance (TEER), which was reversed by the addition of either a methanolic extract from Goji (Lycium barbarum L.) berries or its main component, taurine. Intracellular cAMP levels increased concurrently with the high glucose-induced TEER decrease, and were correlated to an increased activity of the cytosolic isoform of the enzyme adenylyl cyclase. The treatment with plant extract or taurine restored control levels. Data are discussed in view of a possible prevention approach for diabetic retinopathy.

https://pubmed.ncbi.nlm.nih.gov/24345371/

 

Protective Effects of Lycium barbarum Extracts on UVB-Induced Damage in Human Retinal Pigment Epithelial Cells Accompanied by Attenuating ROS and DNA Damage

2018 Nov 7 Abstract

The medicinal herb Lycium barbarum fruit has been widely used for improving and maintaining the health of the eyes in the Far East for many centuries. This study is aimed at investigating whether protective effects generated from the aqueous (LBA) and ethanol (LBE) extracts of the L. barbarum fruit existed against oxidative stress-induced apoptosis in human retinal pigment epithelial cells. L. barbarum extracts LBA and LBE exerted the activity of ROS scavenging and rescued UVB irradiation-induced growth inhibition in retinal pigment epithelial ARPE-19 cells. Compared to LBA, the ethanol extract LBE exerted a superior protective activity on UVB-induced growth arrest in ARPE-19 cells. Both L. barbarum extracts significantly reduced cell cycle G2-arrest population in ARPE-19 cells. Furthermore, the cytometer-based Annexin V/propidium iodide staining assay further showed that both L. barbarum extracts protected ARPE-19 cells from UVB-induced apoptosis. L. barbarum extracts also reduced the activation of γH2AX, a sensor of DNA damage in ARPE-19 cells in a dose-responsive manner. By using Ingenuity Pathway Analysis (IPA), the bioinformatics revealed that the protective effects of both LBA and LBE extracts might be involved in three signaling pathways, especially the Toll-like receptor (TLR) pathway associated with cellular proliferation. Our study suggests that both ethanol and aqueous extracts of L. barbarum exhibit antioxidant activity and rescue UVB-induced apoptosis of ARPE-19 cells. Collectively, the ethanol extract exerts a superior effect on rescuing UVB-induced growth arrest of ARPE-19 compared to the aqueous extract, which might be associated with the activation of TLR signaling. Our present work will benefit the preventive strategy of herbal medicine-based vision protection for treating eye diseases such as age-related macular degeneration in the future.

https://pubmed.ncbi.nlm.nih.gov/30524656/

 

Delay of Cone Degeneration in Retinitis Pigmentosa Using a 12-month Treatment With Lycium Barbarum Supplement

2019 May 23 Abstract

Ethnopharmacological relevance: Lycium barbarum L. (also known as "Goji berry"), a traditional Chinese herbal medicine, has been a common herb in the traditional Chinese pharmacopoeia for centuries. The main active component is the Lycium barbarum polysaccharides and its antioxidative effect has been widely shown to provide neuroprotection to the eye, and it would, therefore, be interesting to determine if Lycium barbarum help delay vision deterioration in patients with retinitis pigmentosa.

Aim of the study: Cone rescue is a potential method for delaying deterioration of visual function in Retinitis pigmentosa (RP). This study aimed to investigate the treatment effect of Lycium barbarum L. (LB) supplement on retinal functions and structure in RP patients after a 12-month intervention trial.

Methods: The investigation was a double-masked and placebo-controlled clinical study. Each of forty-two RP subjects who completed the 12-month intervention (23 and 19 in the treatment and placebo groups respectively) received a daily supply of LB or placebo granules for oral administration. The primary outcome was change of best corrected visual acuity (VA) (90% and 10% contrast) from the baseline to the end of treatment. The secondary outcomes were sensitivity changes of the central visual field, amplitude of full-field electroretinogram (ffERG) (including scotopic maximal response and photopic cone response), and average macular thickness.

Results: The compliance rates for both groups exceeded 80%. There were no deteriorations of either 90% or 10% contrast VA in the LB group compared with the placebo group (p = 0.001). A thinning of macular layer was observed in the placebo group, which was not observed in the LB group (p = 0.008). However, no significant differences were found in the sensitivity of visual field or in any parameters of ffERG between the two groups. No significant adverse effects were reported in the treatment group.

Conclusions: LB supplement provides a neuroprotective effect for the retina and could help delay or minimize cone degeneration in RP.

https://pubmed.ncbi.nlm.nih.gov/30877066/

 

The Neuroprotective and Antioxidative Effects of Submicron and Blended Lycium Barbarum in Experimental Retinal Degeneration in Rats

2018 May 11 Abstract

The object is to determine the neuroprotective and antioxidative effects of submicron and blended Lycium barbarum (LB) on retinal degeneration as evaluated by ERG, retinal histopathology and assays of antioxidant (total GSH) and peroxidant (MDA) in the retina. A rat model of light-induced retinal degeneration was used to assess the protective effect of different forms of Lycium barbarum (LB) on retinal degeneration. Rats were divided into four experimental groups, normal control, light-induced untreated, submicron LB and blended LB treated. The rats of submicron and blended groups were treated with 250 mg/kg LB orally once daily for 54 days, followed by induction of retinal degeneration. Retinal function was assessed by electroretinography (ERG). Enzyme-linked immunosorbent assay of the retina lysates was measured for the levels of antioxidants, reduced glutathione and glutathione disulfide, and peroxidants, malondialdehyde, in the retina. The ERG results showed a protective effect in LB treated groups with a greater effect observed in submicron LB treated group than the blended LB treated group. There were higher levels of GSH plus GSSG and lower MDA in submicron LB treated group than other groups. In conclusion, LB provided protective and antioxidative effects on the rat retina with light-induced retinal degeneration. Submicron LB protected degenerative retina better than blended LB. LB is effective against oxidative stress in the degenerative retina.

https://pubmed.ncbi.nlm.nih.gov/29760314/

 

 

*These statements have not been evaluated by the Food and Drug Administration.

This product is not intended to diagnose, treat, cure, or prevent disease.